Search results for "High Energy Physics - Lattice"
showing 10 items of 466 documents
First moments of the nucleon generalized parton distributions from lattice QCD
2012
We report on our lattice calculations of the nucleon's generalized parton distributions (GPDs), concentrating on their first moments for the case of N_f=2. Due to recent progress on the numerical side we are able to present results for the generalized form factors at pion masses as low as 260 MeV. We perform a fit to one-loop covariant baryon chiral perturbation theory with encouraging results.
Rho resonance, timelike pion form factor, and implications for lattice studies of the hadronic vacuum polarization
2020
We study isospin-1 P-wave ππ scattering in lattice QCD with two flavors of O(a) improved Wilson fermions. For pion masses ranging from mπ=265 MeV to mπ=437 MeV, we determine the energy spectrum in the center-of-mass frame and in three moving frames. We obtain the scattering phase shifts using Lüscher’s finite-volume quantization condition. Fitting the dependence of the phase shifts on the scattering momentum to a Breit-Wigner form allows us to determine the corresponding ρ mass mρ and gρππ coupling. By combining the scattering phase shifts with the decay matrix element of the vector current, we calculate the timelike pion form factor, Fπ, and compare the results to the Gounaris-Sakurai repr…
Photon emissivity of the quark-gluon plasma: A lattice QCD analysis of the transverse channel
2022
We present results for the thermal photon emissivity of the quark-gluon plasma derived from spatially transverse vector correlators computed in lattice QCD at a temperature of 250 MeV. The analysis of the spectral functions, performed at fixed spatial momentum, is based on continuum-extrapolated correlators obtained with two flavours of dynamical Wilson fermions. We compare the next-to-leading order perturbative QCD correlators, as well as the ${\cal N}=4$ supersymmetric Yang-Mills correlators at infinite coupling, to the correlators from lattice QCD and find them to lie within $\sim10\%$ of each other. We then refine the comparison, performing it at the level of filtered spectral functions…
Error estimation and reduction with cross correlations
2010
Besides the well-known effect of autocorrelations in time series of Monte Carlo simulation data resulting from the underlying Markov process, using the same data pool for computing various estimates entails additional cross correlations. This effect, if not properly taken into account, leads to systematically wrong error estimates for combined quantities. Using a straightforward recipe of data analysis employing the jackknife or similar resampling techniques, such problems can be avoided. In addition, a covariance analysis allows for the formulation of optimal estimators with often significantly reduced variance as compared to more conventional averages.
The Belle II Physics Book
2019
cd. autorów: L. Cao48,‡, G. Caria145,‡, G. Casarosa57,‡, C. Cecchi56,‡,D. Cˇ ervenkov10,‡,M.-C. Chang22,‡, P. Chang92,‡, R. Cheaib146,‡, V. Chekelian83,‡, Y. Chen154,‡, B. G. Cheon28,‡, K. Chilikin77,‡, K. Cho70,‡, J. Choi14,‡, S.-K. Choi27,‡, S. Choudhury35,‡, D. Cinabro170,‡, L. M. Cremaldi146,‡, D. Cuesta47,‡, S. Cunliffe16,‡, N. Dash33,‡, E. de la Cruz Burelo9,‡, E. de Lucia52,‡, G. De Nardo54,‡, †Editor. ‡Belle II Collaborator. §Theory or external contributing author. M. De Nuccio16,‡, G. De Pietro59,‡, A. De Yta Hernandez9,‡, B. Deschamps129,‡, M. Destefanis60,‡, S. Dey116,‡, F.Di Capua54,‡, S.Di Carlo75,‡, J. Dingfelder129,‡, Z. Doležal10,‡, I. Domínguez Jiménez125,‡, T.V. Dong30,26,…
Spectral function for overoccupied gluodynamics from real-time lattice simulations
2018
We study the spectral properties of a highly occupied non-Abelian non-equilibrium plasma appearing ubiquitously in weak coupling descriptions of QCD matter. The spectral function of this far-from-equilibrium plasma is measured by employing linear response theory in classical-statistical real-time lattice Yang-Mills simulations. We establish the existence of transversely and longitudinally polarized quasiparticles and obtain their dispersion relations, effective mass, plasmon frequency, damping rate and further structures in the spectral and statistical functions. Our new method can be interpreted as a non-perturbative generalization of hard thermal loop (HTL) effective theory. We see indica…
Chiral expansion of the nucleon mass to order q^6
2006
We present the results of a complete two-loop calculation at order q^6 of the nucleon mass in manifestly Lorentz-invariant chiral perturbation theory. The renormalization is performed using the reformulated infrared renormalization, which allows for the treatment of two-loop integrals while preserving all relevant symmetries, in particular chiral symmetry.
Forward doubly-virtual Compton scattering off the nucleon in chiral perturbation theory: The subtraction function and moments of unpolarized structur…
2020
The forward doubly-virtual Compton scattering (VVCS) off the nucleon contains a wealth of information on nucleon structure, relevant to the calculation of the two-photon-exchange effects in atomic spectroscopy and electron scattering. We report on a complete next-to-leading-order (NLO) calculation of low-energy VVCS in chiral perturbation theory ($\chi$PT). Here we focus on the unpolarized VVCS amplitudes $T_1(\nu, Q^2)$ and $T_2(\nu, Q^2)$, and the corresponding structure functions $F_1(x, Q^2)$ and $F_2(x,Q^2)$. Our results are confronted, where possible, with "data-driven" dispersive evaluations of low-energy structure quantities, such as nucleon polarizabilities. We find significant dis…
Forward doubly-virtual Compton scattering off the nucleon in chiral perturbation theory: II. Spin polarizabilities and moments of polarized structure…
2020
We examine the polarized doubly-virtual Compton scattering (VVCS) off the nucleon using chiral perturbation theory ($\chi$PT). The polarized VVCS contains a wealth of information on the spin structure of the nucleon which is relevant to the calculation of the two-photon-exchange effects in atomic spectroscopy and electron scattering. We report on a complete next-to-leading-order (NLO) calculation of the polarized VVCS amplitudes $S_1(\nu, Q^2)$ and $S_2(\nu, Q^2)$, and the corresponding polarized spin structure functions $g_1(x, Q^2)$ and $g_2(x,Q^2)$. Our results for the moments of polarized structure functions, partially related to different spin polarizabilities, are compared to other th…
Process-independent strong running coupling
2016
We unify two widely different approaches to understanding the infrared behaviour of quantum chromodynamics (QCD), one essentially phenomenological, based on data, and the other computational, realised via quantum field equations in the continuum theory. Using the latter, we explain and calculate a process-independent running-coupling for QCD, a new type of effective charge that is an analogue of the Gell-Mann--Low effective coupling in quantum electrodynamics. The result is almost identical to the process-dependent effective charge defined via the Bjorken sum rule, which provides one of the most basic constraints on our knowledge of nucleon spin structure. This reveals the Bjorken sum to be…